1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
# helpers.py
import html.entities
import re
import typing

from . import __diag__
from .core import *
from .util import _bslash, _flatten, _escape_regex_range_chars


#
# global helpers
#
def delimited_list(
    expr: Union[str, ParserElement],
    delim: Union[str, ParserElement] = ",",
    combine: bool = False,
    min: typing.Optional[int] = None,
    max: typing.Optional[int] = None,
    *,
    allow_trailing_delim: bool = False,
) -> ParserElement:
    """Helper to define a delimited list of expressions - the delimiter
    defaults to ','. By default, the list elements and delimiters can
    have intervening whitespace, and comments, but this can be
    overridden by passing ``combine=True`` in the constructor. If
    ``combine`` is set to ``True``, the matching tokens are
    returned as a single token string, with the delimiters included;
    otherwise, the matching tokens are returned as a list of tokens,
    with the delimiters suppressed.

    If ``allow_trailing_delim`` is set to True, then the list may end with
    a delimiter.

    Example::

        delimited_list(Word(alphas)).parse_string("aa,bb,cc") # -> ['aa', 'bb', 'cc']
        delimited_list(Word(hexnums), delim=':', combine=True).parse_string("AA:BB:CC:DD:EE") # -> ['AA:BB:CC:DD:EE']
    """
    if isinstance(expr, str_type):
        expr = ParserElement._literalStringClass(expr)

    dlName = "{expr} [{delim} {expr}]...{end}".format(
        expr=str(expr.copy().streamline()),
        delim=str(delim),
        end=" [{}]".format(str(delim)) if allow_trailing_delim else "",
    )

    if not combine:
        delim = Suppress(delim)

    if min is not None:
        if min < 1:
            raise ValueError("min must be greater than 0")
        min -= 1
    if max is not None:
        if min is not None and max <= min:
            raise ValueError("max must be greater than, or equal to min")
        max -= 1
    delimited_list_expr = expr + (delim + expr)[min, max]

    if allow_trailing_delim:
        delimited_list_expr += Opt(delim)

    if combine:
        return Combine(delimited_list_expr).set_name(dlName)
    else:
        return delimited_list_expr.set_name(dlName)


def counted_array(
    expr: ParserElement,
    int_expr: typing.Optional[ParserElement] = None,
    *,
    intExpr: typing.Optional[ParserElement] = None,
) -> ParserElement:
    """Helper to define a counted list of expressions.

    This helper defines a pattern of the form::

        integer expr expr expr...

    where the leading integer tells how many expr expressions follow.
    The matched tokens returns the array of expr tokens as a list - the
    leading count token is suppressed.

    If ``int_expr`` is specified, it should be a pyparsing expression
    that produces an integer value.

    Example::

        counted_array(Word(alphas)).parse_string('2 ab cd ef')  # -> ['ab', 'cd']

        # in this parser, the leading integer value is given in binary,
        # '10' indicating that 2 values are in the array
        binary_constant = Word('01').set_parse_action(lambda t: int(t[0], 2))
        counted_array(Word(alphas), int_expr=binary_constant).parse_string('10 ab cd ef')  # -> ['ab', 'cd']

        # if other fields must be parsed after the count but before the
        # list items, give the fields results names and they will
        # be preserved in the returned ParseResults:
        count_with_metadata = integer + Word(alphas)("type")
        typed_array = counted_array(Word(alphanums), int_expr=count_with_metadata)("items")
        result = typed_array.parse_string("3 bool True True False")
        print(result.dump())

        # prints
        # ['True', 'True', 'False']
        # - items: ['True', 'True', 'False']
        # - type: 'bool'
    """
    intExpr = intExpr or int_expr
    array_expr = Forward()

    def count_field_parse_action(s, l, t):
        nonlocal array_expr
        n = t[0]
        array_expr <<= (expr * n) if n else Empty()
        # clear list contents, but keep any named results
        del t[:]

    if intExpr is None:
        intExpr = Word(nums).set_parse_action(lambda t: int(t[0]))
    else:
        intExpr = intExpr.copy()
    intExpr.set_name("arrayLen")
    intExpr.add_parse_action(count_field_parse_action, call_during_try=True)
    return (intExpr + array_expr).set_name("(len) " + str(expr) + "...")


def match_previous_literal(expr: ParserElement) -> ParserElement:
    """Helper to define an expression that is indirectly defined from
    the tokens matched in a previous expression, that is, it looks for
    a 'repeat' of a previous expression.  For example::

        first = Word(nums)
        second = match_previous_literal(first)
        match_expr = first + ":" + second

    will match ``"1:1"``, but not ``"1:2"``.  Because this
    matches a previous literal, will also match the leading
    ``"1:1"`` in ``"1:10"``. If this is not desired, use
    :class:`match_previous_expr`. Do *not* use with packrat parsing
    enabled.
    """
    rep = Forward()

    def copy_token_to_repeater(s, l, t):
        if t:
            if len(t) == 1:
                rep << t[0]
            else:
                # flatten t tokens
                tflat = _flatten(t.as_list())
                rep << And(Literal(tt) for tt in tflat)
        else:
            rep << Empty()

    expr.add_parse_action(copy_token_to_repeater, callDuringTry=True)
    rep.set_name("(prev) " + str(expr))
    return rep


def match_previous_expr(expr: ParserElement) -> ParserElement:
    """Helper to define an expression that is indirectly defined from
    the tokens matched in a previous expression, that is, it looks for
    a 'repeat' of a previous expression.  For example::

        first = Word(nums)
        second = match_previous_expr(first)
        match_expr = first + ":" + second

    will match ``"1:1"``, but not ``"1:2"``.  Because this
    matches by expressions, will *not* match the leading ``"1:1"``
    in ``"1:10"``; the expressions are evaluated first, and then
    compared, so ``"1"`` is compared with ``"10"``. Do *not* use
    with packrat parsing enabled.
    """
    rep = Forward()
    e2 = expr.copy()
    rep <<= e2

    def copy_token_to_repeater(s, l, t):
        matchTokens = _flatten(t.as_list())

        def must_match_these_tokens(s, l, t):
            theseTokens = _flatten(t.as_list())
            if theseTokens != matchTokens:
                raise ParseException(
                    s, l, "Expected {}, found{}".format(matchTokens, theseTokens)
                )

        rep.set_parse_action(must_match_these_tokens, callDuringTry=True)

    expr.add_parse_action(copy_token_to_repeater, callDuringTry=True)
    rep.set_name("(prev) " + str(expr))
    return rep


def one_of(
    strs: Union[typing.Iterable[str], str],
    caseless: bool = False,
    use_regex: bool = True,
    as_keyword: bool = False,
    *,
    useRegex: bool = True,
    asKeyword: bool = False,
) -> ParserElement:
    """Helper to quickly define a set of alternative :class:`Literal` s,
    and makes sure to do longest-first testing when there is a conflict,
    regardless of the input order, but returns
    a :class:`MatchFirst` for best performance.

    Parameters:

    - ``strs`` - a string of space-delimited literals, or a collection of
      string literals
    - ``caseless`` - treat all literals as caseless - (default= ``False``)
    - ``use_regex`` - as an optimization, will
      generate a :class:`Regex` object; otherwise, will generate
      a :class:`MatchFirst` object (if ``caseless=True`` or ``asKeyword=True``, or if
      creating a :class:`Regex` raises an exception) - (default= ``True``)
    - ``as_keyword`` - enforce :class:`Keyword`-style matching on the
      generated expressions - (default= ``False``)
    - ``asKeyword`` and ``useRegex`` are retained for pre-PEP8 compatibility,
      but will be removed in a future release

    Example::

        comp_oper = one_of("< = > <= >= !=")
        var = Word(alphas)
        number = Word(nums)
        term = var | number
        comparison_expr = term + comp_oper + term
        print(comparison_expr.search_string("B = 12  AA=23 B<=AA AA>12"))

    prints::

        [['B', '=', '12'], ['AA', '=', '23'], ['B', '<=', 'AA'], ['AA', '>', '12']]
    """
    asKeyword = asKeyword or as_keyword
    useRegex = useRegex and use_regex

    if (
        isinstance(caseless, str_type)
        and __diag__.warn_on_multiple_string_args_to_oneof
    ):
        warnings.warn(
            "More than one string argument passed to one_of, pass"
            " choices as a list or space-delimited string",
            stacklevel=2,
        )

    if caseless:
        isequal = lambda a, b: a.upper() == b.upper()
        masks = lambda a, b: b.upper().startswith(a.upper())
        parseElementClass = CaselessKeyword if asKeyword else CaselessLiteral
    else:
        isequal = lambda a, b: a == b
        masks = lambda a, b: b.startswith(a)
        parseElementClass = Keyword if asKeyword else Literal

    symbols: List[str] = []
    if isinstance(strs, str_type):
        symbols = strs.split()
    elif isinstance(strs, Iterable):
        symbols = list(strs)
    else:
        raise TypeError("Invalid argument to one_of, expected string or iterable")
    if not symbols:
        return NoMatch()

    # reorder given symbols to take care to avoid masking longer choices with shorter ones
    # (but only if the given symbols are not just single characters)
    if any(len(sym) > 1 for sym in symbols):
        i = 0
        while i < len(symbols) - 1:
            cur = symbols[i]
            for j, other in enumerate(symbols[i + 1 :]):
                if isequal(other, cur):
                    del symbols[i + j + 1]
                    break
                elif masks(cur, other):
                    del symbols[i + j + 1]
                    symbols.insert(i, other)
                    break
            else:
                i += 1

    if useRegex:
        re_flags: int = re.IGNORECASE if caseless else 0

        try:
            if all(len(sym) == 1 for sym in symbols):
                # symbols are just single characters, create range regex pattern
                patt = "[{}]".format(
                    "".join(_escape_regex_range_chars(sym) for sym in symbols)
                )
            else:
                patt = "|".join(re.escape(sym) for sym in symbols)

            # wrap with \b word break markers if defining as keywords
            if asKeyword:
                patt = r"\b(?:{})\b".format(patt)

            ret = Regex(patt, flags=re_flags).set_name(" | ".join(symbols))

            if caseless:
                # add parse action to return symbols as specified, not in random
                # casing as found in input string
                symbol_map = {sym.lower(): sym for sym in symbols}
                ret.add_parse_action(lambda s, l, t: symbol_map[t[0].lower()])

            return ret

        except re.error:
            warnings.warn(
                "Exception creating Regex for one_of, building MatchFirst", stacklevel=2
            )

    # last resort, just use MatchFirst
    return MatchFirst(parseElementClass(sym) for sym in symbols).set_name(
        " | ".join(symbols)
    )


def dict_of(key: ParserElement, value: ParserElement) -> ParserElement:
    """Helper to easily and clearly define a dictionary by specifying
    the respective patterns for the key and value.  Takes care of
    defining the :class:`Dict`, :class:`ZeroOrMore`, and
    :class:`Group` tokens in the proper order.  The key pattern
    can include delimiting markers or punctuation, as long as they are
    suppressed, thereby leaving the significant key text.  The value
    pattern can include named results, so that the :class:`Dict` results
    can include named token fields.

    Example::

        text = "shape: SQUARE posn: upper left color: light blue texture: burlap"
        attr_expr = (label + Suppress(':') + OneOrMore(data_word, stop_on=label).set_parse_action(' '.join))
        print(attr_expr[1, ...].parse_string(text).dump())

        attr_label = label
        attr_value = Suppress(':') + OneOrMore(data_word, stop_on=label).set_parse_action(' '.join)

        # similar to Dict, but simpler call format
        result = dict_of(attr_label, attr_value).parse_string(text)
        print(result.dump())
        print(result['shape'])
        print(result.shape)  # object attribute access works too
        print(result.as_dict())

    prints::

        [['shape', 'SQUARE'], ['posn', 'upper left'], ['color', 'light blue'], ['texture', 'burlap']]
        - color: 'light blue'
        - posn: 'upper left'
        - shape: 'SQUARE'
        - texture: 'burlap'
        SQUARE
        SQUARE
        {'color': 'light blue', 'shape': 'SQUARE', 'posn': 'upper left', 'texture': 'burlap'}
    """
    return Dict(OneOrMore(Group(key + value)))


def original_text_for(
    expr: ParserElement, as_string: bool = True, *, asString: bool = True
) -> ParserElement:
    """Helper to return the original, untokenized text for a given
    expression.  Useful to restore the parsed fields of an HTML start
    tag into the raw tag text itself, or to revert separate tokens with
    intervening whitespace back to the original matching input text. By
    default, returns astring containing the original parsed text.

    If the optional ``as_string`` argument is passed as
    ``False``, then the return value is
    a :class:`ParseResults` containing any results names that
    were originally matched, and a single token containing the original
    matched text from the input string.  So if the expression passed to
    :class:`original_text_for` contains expressions with defined
    results names, you must set ``as_string`` to ``False`` if you
    want to preserve those results name values.

    The ``asString`` pre-PEP8 argument is retained for compatibility,
    but will be removed in a future release.

    Example::

        src = "this is test <b> bold <i>text</i> </b> normal text "
        for tag in ("b", "i"):
            opener, closer = make_html_tags(tag)
            patt = original_text_for(opener + SkipTo(closer) + closer)
            print(patt.search_string(src)[0])

    prints::

        ['<b> bold <i>text</i> </b>']
        ['<i>text</i>']
    """
    asString = asString and as_string

    locMarker = Empty().set_parse_action(lambda s, loc, t: loc)
    endlocMarker = locMarker.copy()
    endlocMarker.callPreparse = False
    matchExpr = locMarker("_original_start") + expr + endlocMarker("_original_end")
    if asString:
        extractText = lambda s, l, t: s[t._original_start : t._original_end]
    else:

        def extractText(s, l, t):
            t[:] = [s[t.pop("_original_start") : t.pop("_original_end")]]

    matchExpr.set_parse_action(extractText)
    matchExpr.ignoreExprs = expr.ignoreExprs
    matchExpr.suppress_warning(Diagnostics.warn_ungrouped_named_tokens_in_collection)
    return matchExpr


def ungroup(expr: ParserElement) -> ParserElement:
    """Helper to undo pyparsing's default grouping of And expressions,
    even if all but one are non-empty.
    """
    return TokenConverter(expr).add_parse_action(lambda t: t[0])


def locatedExpr(expr: ParserElement) -> ParserElement:
    """
    (DEPRECATED - future code should use the Located class)
    Helper to decorate a returned token with its starting and ending
    locations in the input string.

    This helper adds the following results names:

    - ``locn_start`` - location where matched expression begins
    - ``locn_end`` - location where matched expression ends
    - ``value`` - the actual parsed results

    Be careful if the input text contains ``<TAB>`` characters, you
    may want to call :class:`ParserElement.parseWithTabs`

    Example::

        wd = Word(alphas)
        for match in locatedExpr(wd).searchString("ljsdf123lksdjjf123lkkjj1222"):
            print(match)

    prints::

        [[0, 'ljsdf', 5]]
        [[8, 'lksdjjf', 15]]
        [[18, 'lkkjj', 23]]
    """
    locator = Empty().set_parse_action(lambda ss, ll, tt: ll)
    return Group(
        locator("locn_start")
        + expr("value")
        + locator.copy().leaveWhitespace()("locn_end")
    )


def nested_expr(
    opener: Union[str, ParserElement] = "(",
    closer: Union[str, ParserElement] = ")",
    content: typing.Optional[ParserElement] = None,
    ignore_expr: ParserElement = quoted_string(),
    *,
    ignoreExpr: ParserElement = quoted_string(),
) -> ParserElement:
    """Helper method for defining nested lists enclosed in opening and
    closing delimiters (``"("`` and ``")"`` are the default).

    Parameters:
    - ``opener`` - opening character for a nested list
      (default= ``"("``); can also be a pyparsing expression
    - ``closer`` - closing character for a nested list
      (default= ``")"``); can also be a pyparsing expression
    - ``content`` - expression for items within the nested lists
      (default= ``None``)
    - ``ignore_expr`` - expression for ignoring opening and closing delimiters
      (default= :class:`quoted_string`)
    - ``ignoreExpr`` - this pre-PEP8 argument is retained for compatibility
      but will be removed in a future release

    If an expression is not provided for the content argument, the
    nested expression will capture all whitespace-delimited content
    between delimiters as a list of separate values.

    Use the ``ignore_expr`` argument to define expressions that may
    contain opening or closing characters that should not be treated as
    opening or closing characters for nesting, such as quoted_string or
    a comment expression.  Specify multiple expressions using an
    :class:`Or` or :class:`MatchFirst`. The default is
    :class:`quoted_string`, but if no expressions are to be ignored, then
    pass ``None`` for this argument.

    Example::

        data_type = one_of("void int short long char float double")
        decl_data_type = Combine(data_type + Opt(Word('*')))
        ident = Word(alphas+'_', alphanums+'_')
        number = pyparsing_common.number
        arg = Group(decl_data_type + ident)
        LPAR, RPAR = map(Suppress, "()")

        code_body = nested_expr('{', '}', ignore_expr=(quoted_string | c_style_comment))

        c_function = (decl_data_type("type")
                      + ident("name")
                      + LPAR + Opt(delimited_list(arg), [])("args") + RPAR
                      + code_body("body"))
        c_function.ignore(c_style_comment)

        source_code = '''
            int is_odd(int x) {
                return (x%2);
            }

            int dec_to_hex(char hchar) {
                if (hchar >= '0' && hchar <= '9') {
                    return (ord(hchar)-ord('0'));
                } else {
                    return (10+ord(hchar)-ord('A'));
                }
            }
        '''
        for func in c_function.search_string(source_code):
            print("%(name)s (%(type)s) args: %(args)s" % func)


    prints::

        is_odd (int) args: [['int', 'x']]
        dec_to_hex (int) args: [['char', 'hchar']]
    """
    if ignoreExpr != ignore_expr:
        ignoreExpr = ignore_expr if ignoreExpr == quoted_string() else ignoreExpr
    if opener == closer:
        raise ValueError("opening and closing strings cannot be the same")
    if content is None:
        if isinstance(opener, str_type) and isinstance(closer, str_type):
            if len(opener) == 1 and len(closer) == 1:
                if ignoreExpr is not None:
                    content = Combine(
                        OneOrMore(
                            ~ignoreExpr
                            + CharsNotIn(
                                opener + closer + ParserElement.DEFAULT_WHITE_CHARS,
                                exact=1,
                            )
                        )
                    ).set_parse_action(lambda t: t[0].strip())
                else:
                    content = empty.copy() + CharsNotIn(
                        opener + closer + ParserElement.DEFAULT_WHITE_CHARS
                    ).set_parse_action(lambda t: t[0].strip())
            else:
                if ignoreExpr is not None:
                    content = Combine(
                        OneOrMore(
                            ~ignoreExpr
                            + ~Literal(opener)
                            + ~Literal(closer)
                            + CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS, exact=1)
                        )
                    ).set_parse_action(lambda t: t[0].strip())
                else:
                    content = Combine(
                        OneOrMore(
                            ~Literal(opener)
                            + ~Literal(closer)
                            + CharsNotIn(ParserElement.DEFAULT_WHITE_CHARS, exact=1)
                        )
                    ).set_parse_action(lambda t: t[0].strip())
        else:
            raise ValueError(
                "opening and closing arguments must be strings if no content expression is given"
            )
    ret = Forward()
    if ignoreExpr is not None:
        ret <<= Group(
            Suppress(opener) + ZeroOrMore(ignoreExpr | ret | content) + Suppress(closer)
        )
    else:
        ret <<= Group(Suppress(opener) + ZeroOrMore(ret | content) + Suppress(closer))
    ret.set_name("nested %s%s expression" % (opener, closer))
    return ret


def _makeTags(tagStr, xml, suppress_LT=Suppress("<"), suppress_GT=Suppress(">")):
    """Internal helper to construct opening and closing tag expressions, given a tag name"""
    if isinstance(tagStr, str_type):
        resname = tagStr
        tagStr = Keyword(tagStr, caseless=not xml)
    else:
        resname = tagStr.name

    tagAttrName = Word(alphas, alphanums + "_-:")
    if xml:
        tagAttrValue = dbl_quoted_string.copy().set_parse_action(remove_quotes)
        openTag = (
            suppress_LT
            + tagStr("tag")
            + Dict(ZeroOrMore(Group(tagAttrName + Suppress("=") + tagAttrValue)))
            + Opt("/", default=[False])("empty").set_parse_action(
                lambda s, l, t: t[0] == "/"
            )
            + suppress_GT
        )
    else:
        tagAttrValue = quoted_string.copy().set_parse_action(remove_quotes) | Word(
            printables, exclude_chars=">"
        )
        openTag = (
            suppress_LT
            + tagStr("tag")
            + Dict(
                ZeroOrMore(
                    Group(
                        tagAttrName.set_parse_action(lambda t: t[0].lower())
                        + Opt(Suppress("=") + tagAttrValue)
                    )
                )
            )
            + Opt("/", default=[False])("empty").set_parse_action(
                lambda s, l, t: t[0] == "/"
            )
            + suppress_GT
        )
    closeTag = Combine(Literal("</") + tagStr + ">", adjacent=False)

    openTag.set_name("<%s>" % resname)
    # add start<tagname> results name in parse action now that ungrouped names are not reported at two levels
    openTag.add_parse_action(
        lambda t: t.__setitem__(
            "start" + "".join(resname.replace(":", " ").title().split()), t.copy()
        )
    )
    closeTag = closeTag(
        "end" + "".join(resname.replace(":", " ").title().split())
    ).set_name("</%s>" % resname)
    openTag.tag = resname
    closeTag.tag = resname
    openTag.tag_body = SkipTo(closeTag())
    return openTag, closeTag


def make_html_tags(
    tag_str: Union[str, ParserElement]
) -> Tuple[ParserElement, ParserElement]:
    """Helper to construct opening and closing tag expressions for HTML,
    given a tag name. Matches tags in either upper or lower case,
    attributes with namespaces and with quoted or unquoted values.

    Example::

        text = '<td>More info at the <a href="https://github.com/pyparsing/pyparsing/wiki">pyparsing</a> wiki page</td>'
        # make_html_tags returns pyparsing expressions for the opening and
        # closing tags as a 2-tuple
        a, a_end = make_html_tags("A")
        link_expr = a + SkipTo(a_end)("link_text") + a_end

        for link in link_expr.search_string(text):
            # attributes in the <A> tag (like "href" shown here) are
            # also accessible as named results
            print(link.link_text, '->', link.href)

    prints::

        pyparsing -> https://github.com/pyparsing/pyparsing/wiki
    """
    return _makeTags(tag_str, False)


def make_xml_tags(
    tag_str: Union[str, ParserElement]
) -> Tuple[ParserElement, ParserElement]:
    """Helper to construct opening and closing tag expressions for XML,
    given a tag name. Matches tags only in the given upper/lower case.

    Example: similar to :class:`make_html_tags`
    """
    return _makeTags(tag_str, True)


any_open_tag: ParserElement
any_close_tag: ParserElement
any_open_tag, any_close_tag = make_html_tags(
    Word(alphas, alphanums + "_:").set_name("any tag")
)

_htmlEntityMap = {k.rstrip(";"): v for k, v in html.entities.html5.items()}
common_html_entity = Regex("&(?P<entity>" + "|".join(_htmlEntityMap) + ");").set_name(
    "common HTML entity"
)


def replace_html_entity(t):
    """Helper parser action to replace common HTML entities with their special characters"""
    return _htmlEntityMap.get(t.entity)


class OpAssoc(Enum):
    LEFT = 1
    RIGHT = 2


InfixNotationOperatorArgType = Union[
    ParserElement, str, Tuple[Union[ParserElement, str], Union[ParserElement, str]]
]
InfixNotationOperatorSpec = Union[
    Tuple[
        InfixNotationOperatorArgType,
        int,
        OpAssoc,
        typing.Optional[ParseAction],
    ],
    Tuple[
        InfixNotationOperatorArgType,
        int,
        OpAssoc,
    ],
]


def infix_notation(
    base_expr: ParserElement,
    op_list: List[InfixNotationOperatorSpec],
    lpar: Union[str, ParserElement] = Suppress("("),
    rpar: Union[str, ParserElement] = Suppress(")"),
) -> ParserElement:
    """Helper method for constructing grammars of expressions made up of
    operators working in a precedence hierarchy.  Operators may be unary
    or binary, left- or right-associative.  Parse actions can also be
    attached to operator expressions. The generated parser will also
    recognize the use of parentheses to override operator precedences
    (see example below).

    Note: if you define a deep operator list, you may see performance
    issues when using infix_notation. See
    :class:`ParserElement.enable_packrat` for a mechanism to potentially
    improve your parser performance.

    Parameters:
    - ``base_expr`` - expression representing the most basic operand to
      be used in the expression
    - ``op_list`` - list of tuples, one for each operator precedence level
      in the expression grammar; each tuple is of the form ``(op_expr,
      num_operands, right_left_assoc, (optional)parse_action)``, where:

      - ``op_expr`` is the pyparsing expression for the operator; may also
        be a string, which will be converted to a Literal; if ``num_operands``
        is 3, ``op_expr`` is a tuple of two expressions, for the two
        operators separating the 3 terms
      - ``num_operands`` is the number of terms for this operator (must be 1,
        2, or 3)
      - ``right_left_assoc`` is the indicator whether the operator is right
        or left associative, using the pyparsing-defined constants
        ``OpAssoc.RIGHT`` and ``OpAssoc.LEFT``.
      - ``parse_action`` is the parse action to be associated with
        expressions matching this operator expression (the parse action
        tuple member may be omitted); if the parse action is passed
        a tuple or list of functions, this is equivalent to calling
        ``set_parse_action(*fn)``
        (:class:`ParserElement.set_parse_action`)
    - ``lpar`` - expression for matching left-parentheses; if passed as a
      str, then will be parsed as Suppress(lpar). If lpar is passed as
      an expression (such as ``Literal('(')``), then it will be kept in
      the parsed results, and grouped with them. (default= ``Suppress('(')``)
    - ``rpar`` - expression for matching right-parentheses; if passed as a
      str, then will be parsed as Suppress(rpar). If rpar is passed as
      an expression (such as ``Literal(')')``), then it will be kept in
      the parsed results, and grouped with them. (default= ``Suppress(')')``)

    Example::

        # simple example of four-function arithmetic with ints and
        # variable names
        integer = pyparsing_common.signed_integer
        varname = pyparsing_common.identifier

        arith_expr = infix_notation(integer | varname,
            [
            ('-', 1, OpAssoc.RIGHT),
            (one_of('* /'), 2, OpAssoc.LEFT),
            (one_of('+ -'), 2, OpAssoc.LEFT),
            ])

        arith_expr.run_tests('''
            5+3*6
            (5+3)*6
            -2--11
            ''', full_dump=False)

    prints::

        5+3*6
        [[5, '+', [3, '*', 6]]]

        (5+3)*6
        [[[5, '+', 3], '*', 6]]

        -2--11
        [[['-', 2], '-', ['-', 11]]]
    """
    # captive version of FollowedBy that does not do parse actions or capture results names
    class _FB(FollowedBy):
        def parseImpl(self, instring, loc, doActions=True):
            self.expr.try_parse(instring, loc)
            return loc, []

    _FB.__name__ = "FollowedBy>"

    ret = Forward()
    if isinstance(lpar, str):
        lpar = Suppress(lpar)
    if isinstance(rpar, str):
        rpar = Suppress(rpar)

    # if lpar and rpar are not suppressed, wrap in group
    if not (isinstance(rpar, Suppress) and isinstance(rpar, Suppress)):
        lastExpr = base_expr | Group(lpar + ret + rpar)
    else:
        lastExpr = base_expr | (lpar + ret + rpar)

    for i, operDef in enumerate(op_list):
        opExpr, arity, rightLeftAssoc, pa = (operDef + (None,))[:4]
        if isinstance(opExpr, str_type):
            opExpr = ParserElement._literalStringClass(opExpr)
        if arity == 3:
            if not isinstance(opExpr, (tuple, list)) or len(opExpr) != 2:
                raise ValueError(
                    "if numterms=3, opExpr must be a tuple or list of two expressions"
                )
            opExpr1, opExpr2 = opExpr
            term_name = "{}{} term".format(opExpr1, opExpr2)
        else:
            term_name = "{} term".format(opExpr)

        if not 1 <= arity <= 3:
            raise ValueError("operator must be unary (1), binary (2), or ternary (3)")

        if rightLeftAssoc not in (OpAssoc.LEFT, OpAssoc.RIGHT):
            raise ValueError("operator must indicate right or left associativity")

        thisExpr: Forward = Forward().set_name(term_name)
        if rightLeftAssoc is OpAssoc.LEFT:
            if arity == 1:
                matchExpr = _FB(lastExpr + opExpr) + Group(lastExpr + opExpr[1, ...])
            elif arity == 2:
                if opExpr is not None:
                    matchExpr = _FB(lastExpr + opExpr + lastExpr) + Group(
                        lastExpr + (opExpr + lastExpr)[1, ...]
                    )
                else:
                    matchExpr = _FB(lastExpr + lastExpr) + Group(lastExpr[2, ...])
            elif arity == 3:
                matchExpr = _FB(
                    lastExpr + opExpr1 + lastExpr + opExpr2 + lastExpr
                ) + Group(lastExpr + OneOrMore(opExpr1 + lastExpr + opExpr2 + lastExpr))
        elif rightLeftAssoc is OpAssoc.RIGHT:
            if arity == 1:
                # try to avoid LR with this extra test
                if not isinstance(opExpr, Opt):
                    opExpr = Opt(opExpr)
                matchExpr = _FB(opExpr.expr + thisExpr) + Group(opExpr + thisExpr)
            elif arity == 2:
                if opExpr is not None:
                    matchExpr = _FB(lastExpr + opExpr + thisExpr) + Group(
                        lastExpr + (opExpr + thisExpr)[1, ...]
                    )
                else:
                    matchExpr = _FB(lastExpr + thisExpr) + Group(
                        lastExpr + thisExpr[1, ...]
                    )
            elif arity == 3:
                matchExpr = _FB(
                    lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr
                ) + Group(lastExpr + opExpr1 + thisExpr + opExpr2 + thisExpr)
        if pa:
            if isinstance(pa, (tuple, list)):
                matchExpr.set_parse_action(*pa)
            else:
                matchExpr.set_parse_action(pa)
        thisExpr <<= (matchExpr | lastExpr).setName(term_name)
        lastExpr = thisExpr
    ret <<= lastExpr
    return ret


def indentedBlock(blockStatementExpr, indentStack, indent=True, backup_stacks=[]):
    """
    (DEPRECATED - use IndentedBlock class instead)
    Helper method for defining space-delimited indentation blocks,
    such as those used to define block statements in Python source code.

    Parameters:

    - ``blockStatementExpr`` - expression defining syntax of statement that
      is repeated within the indented block
    - ``indentStack`` - list created by caller to manage indentation stack
      (multiple ``statementWithIndentedBlock`` expressions within a single
      grammar should share a common ``indentStack``)
    - ``indent`` - boolean indicating whether block must be indented beyond
      the current level; set to ``False`` for block of left-most statements
      (default= ``True``)

    A valid block must contain at least one ``blockStatement``.

    (Note that indentedBlock uses internal parse actions which make it
    incompatible with packrat parsing.)

    Example::

        data = '''
        def A(z):
          A1
          B = 100
          G = A2
          A2
          A3
        B
        def BB(a,b,c):
          BB1
          def BBA():
            bba1
            bba2
            bba3
        C
        D
        def spam(x,y):
             def eggs(z):
                 pass
        '''


        indentStack = [1]
        stmt = Forward()

        identifier = Word(alphas, alphanums)
        funcDecl = ("def" + identifier + Group("(" + Opt(delimitedList(identifier)) + ")") + ":")
        func_body = indentedBlock(stmt, indentStack)
        funcDef = Group(funcDecl + func_body)

        rvalue = Forward()
        funcCall = Group(identifier + "(" + Opt(delimitedList(rvalue)) + ")")
        rvalue << (funcCall | identifier | Word(nums))
        assignment = Group(identifier + "=" + rvalue)
        stmt << (funcDef | assignment | identifier)

        module_body = stmt[1, ...]

        parseTree = module_body.parseString(data)
        parseTree.pprint()

    prints::

        [['def',
          'A',
          ['(', 'z', ')'],
          ':',
          [['A1'], [['B', '=', '100']], [['G', '=', 'A2']], ['A2'], ['A3']]],
         'B',
         ['def',
          'BB',
          ['(', 'a', 'b', 'c', ')'],
          ':',
          [['BB1'], [['def', 'BBA', ['(', ')'], ':', [['bba1'], ['bba2'], ['bba3']]]]]],
         'C',
         'D',
         ['def',
          'spam',
          ['(', 'x', 'y', ')'],
          ':',
          [[['def', 'eggs', ['(', 'z', ')'], ':', [['pass']]]]]]]
    """
    backup_stacks.append(indentStack[:])

    def reset_stack():
        indentStack[:] = backup_stacks[-1]

    def checkPeerIndent(s, l, t):
        if l >= len(s):
            return
        curCol = col(l, s)
        if curCol != indentStack[-1]:
            if curCol > indentStack[-1]:
                raise ParseException(s, l, "illegal nesting")
            raise ParseException(s, l, "not a peer entry")

    def checkSubIndent(s, l, t):
        curCol = col(l, s)
        if curCol > indentStack[-1]:
            indentStack.append(curCol)
        else:
            raise ParseException(s, l, "not a subentry")

    def checkUnindent(s, l, t):
        if l >= len(s):
            return
        curCol = col(l, s)
        if not (indentStack and curCol in indentStack):
            raise ParseException(s, l, "not an unindent")
        if curCol < indentStack[-1]:
            indentStack.pop()

    NL = OneOrMore(LineEnd().set_whitespace_chars("\t ").suppress())
    INDENT = (Empty() + Empty().set_parse_action(checkSubIndent)).set_name("INDENT")
    PEER = Empty().set_parse_action(checkPeerIndent).set_name("")
    UNDENT = Empty().set_parse_action(checkUnindent).set_name("UNINDENT")
    if indent:
        smExpr = Group(
            Opt(NL)
            + INDENT
            + OneOrMore(PEER + Group(blockStatementExpr) + Opt(NL))
            + UNDENT
        )
    else:
        smExpr = Group(
            Opt(NL)
            + OneOrMore(PEER + Group(blockStatementExpr) + Opt(NL))
            + Opt(UNDENT)
        )

    # add a parse action to remove backup_stack from list of backups
    smExpr.add_parse_action(
        lambda: backup_stacks.pop(-1) and None if backup_stacks else None
    )
    smExpr.set_fail_action(lambda a, b, c, d: reset_stack())
    blockStatementExpr.ignore(_bslash + LineEnd())
    return smExpr.set_name("indented block")


# it's easy to get these comment structures wrong - they're very common, so may as well make them available
c_style_comment = Combine(Regex(r"/\*(?:[^*]|\*(?!/))*") + "*/").set_name(
    "C style comment"
)
"Comment of the form ``/* ... */``"

html_comment = Regex(r"<!--[\s\S]*?-->").set_name("HTML comment")
"Comment of the form ``<!-- ... -->``"

rest_of_line = Regex(r".*").leave_whitespace().set_name("rest of line")
dbl_slash_comment = Regex(r"//(?:\\\n|[^\n])*").set_name("// comment")
"Comment of the form ``// ... (to end of line)``"

cpp_style_comment = Combine(
    Regex(r"/\*(?:[^*]|\*(?!/))*") + "*/" | dbl_slash_comment
).set_name("C++ style comment")
"Comment of either form :class:`c_style_comment` or :class:`dbl_slash_comment`"

java_style_comment = cpp_style_comment
"Same as :class:`cpp_style_comment`"

python_style_comment = Regex(r"#.*").set_name("Python style comment")
"Comment of the form ``# ... (to end of line)``"


# build list of built-in expressions, for future reference if a global default value
# gets updated
_builtin_exprs: List[ParserElement] = [
    v for v in vars().values() if isinstance(v, ParserElement)
]


# pre-PEP8 compatible names
delimitedList = delimited_list
countedArray = counted_array
matchPreviousLiteral = match_previous_literal
matchPreviousExpr = match_previous_expr
oneOf = one_of
dictOf = dict_of
originalTextFor = original_text_for
nestedExpr = nested_expr
makeHTMLTags = make_html_tags
makeXMLTags = make_xml_tags
anyOpenTag, anyCloseTag = any_open_tag, any_close_tag
commonHTMLEntity = common_html_entity
replaceHTMLEntity = replace_html_entity
opAssoc = OpAssoc
infixNotation = infix_notation
cStyleComment = c_style_comment
htmlComment = html_comment
restOfLine = rest_of_line
dblSlashComment = dbl_slash_comment
cppStyleComment = cpp_style_comment
javaStyleComment = java_style_comment
pythonStyleComment = python_style_comment