1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
/* splay.c: SPLAY TREE IMPLEMENTATION
 *
 * $Id: //info.ravenbrook.com/project/mps/custom/cet/branch/2016-09-13/job004006/code/splay.c#1 $
 * Copyright (c) 2001-2016 Ravenbrook Limited.  See end of file for license.
 *
 * .purpose: Splay trees are used to manage potentially unbounded
 * collections of ordered things.  In the MPS these are usually
 * address-ordered memory blocks.
 *
 * .source: <design/splay>
 *
 * .note.stack: It's important that the MPS have a bounded stack size,
 * and this is a problem for tree algorithms. Basically, we have to
 * avoid recursion. See design.mps.sp.sol.depth.no-recursion.
 */


#include "splay.h"
#include "mpm.h"

SRCID(splay, "$Id: //info.ravenbrook.com/project/mps/custom/cet/branch/2016-09-13/job004006/code/splay.c#1 $");


/* SPLAY_DEBUG -- switch for extra debugging
 *
 * Define SPLAY_DEBUG to enable extra consistency checking when modifying
 * splay tree algorithms, which can be tricky to get right.  This will
 * check the tree size and ordering frequently.
 */

/* #define SPLAY_DEBUG */

#define SplayTreeSetRoot(splay, tree) BEGIN ((splay)->root = (tree)); END
#define SplayCompare(tree, key, node) (((tree)->compare)(node, key))
#define SplayHasUpdate(splay) ((splay)->updateNode != SplayTrivUpdate)


/* SplayTreeCheck -- check consistency of SplayTree
 *
 * See guide.impl.c.adt.check and <design/check>.
 */

Bool SplayTreeCheck(SplayTree splay)
{
  UNUSED(splay);
  CHECKS(SplayTree, splay);
  CHECKL(FUNCHECK(splay->compare));
  CHECKL(FUNCHECK(splay->nodeKey));
  CHECKL(FUNCHECK(splay->updateNode));
  /* Can't use CHECKD_NOSIG because TreeEMPTY is NULL. */
  CHECKL(TreeCheck(splay->root));
  return TRUE;
}


/* SplayTreeInit -- initialise a splay tree
 *
 * ``compare`` must provide a total ordering on node keys.
 *
 * ``nodeKey`` extracts a key from a tree node for passing to ``compare``.
 *
 * ``updateNode`` will be applied to nodes from bottom to top when the
 * tree is restructured in order to maintain client properties (see
 * design.mps.splay.prop).  If SplayTrivUpdate is be passed, faster
 * algorithms are chosen for splaying.  Compare SplaySplitDown with
 * SplaySplitRev.
 */

void SplayTreeInit(SplayTree splay,
                   TreeCompareFunction compare,
                   TreeKeyFunction nodeKey,
                   SplayUpdateNodeFunction updateNode)
{
  AVER(splay != NULL);
  AVER(FUNCHECK(compare));
  AVER(FUNCHECK(nodeKey));
  AVER(FUNCHECK(updateNode));

  splay->compare = compare;
  splay->nodeKey = nodeKey;
  splay->updateNode = updateNode;
  SplayTreeSetRoot(splay, TreeEMPTY);
  splay->sig = SplayTreeSig;

  AVERT(SplayTree, splay);
}


/* SplayTreeFinish -- finish a splay tree
 *
 * Does not attempt to descend or finish any tree nodes.
 *
 * TODO: Should probably fail on non-empty tree, so that client code is
 * forced to decide what to do about that.
 */

void SplayTreeFinish(SplayTree splay)
{
  AVERT(SplayTree, splay);
  splay->sig = SigInvalid;
  SplayTreeSetRoot(splay, TreeEMPTY);
  splay->compare = NULL;
  splay->nodeKey = NULL;
  splay->updateNode = NULL;
}


/* SplayTrivUpdate -- trivial update method
 *
 * This is passed to SplayTreeInit to indicate that no client property
 * maintenance is required.  It can also be called to do nothing.
 */

void SplayTrivUpdate(SplayTree splay, Tree tree)
{
  AVERT(SplayTree, splay);
  AVERT(Tree, tree);
}


/* compareLess, compareGreater -- trivial comparisons
 *
 * These comparisons can be passed to SplaySplay to find the leftmost
 * or rightmost nodes in a tree quickly.
 *
 * NOTE: It's also possible to make specialised versions of SplaySplit
 * that traverse left and right unconditionally.  These weren't found
 * to have a significant performance advantage when benchmarking.
 * RB 2014-02-23
 */

static Compare compareLess(Tree tree, TreeKey key)
{
  UNUSED(tree);
  UNUSED(key);
  return CompareLESS;
}

static Compare compareGreater(Tree tree, TreeKey key)
{
  UNUSED(tree);
  UNUSED(key);
  return CompareGREATER;
}


/* SplayDebugUpdate -- force update of client property
 *
 * A debugging utility to recursively update the client property of
 * a subtree.  May not be used in production MPS because it has
 * indefinite stack usage.  See .note.stack.
 */

void SplayDebugUpdate(SplayTree splay, Tree tree)
{
  AVERT(SplayTree, splay);
  AVERT(Tree, tree);
  if (tree == TreeEMPTY)
    return;
  SplayDebugUpdate(splay, TreeLeft(tree));
  SplayDebugUpdate(splay, TreeRight(tree));
  splay->updateNode(splay, tree);
}


/* SplayDebugCount -- count and check order of tree
 *
 * This function may be called from a debugger or temporarily inserted
 * during development to check a tree's integrity.  It may not be called
 * from the production MPS because it uses indefinite stack depth.
 * See <code/tree.c#.note.stack>.
 */

Count SplayDebugCount(SplayTree splay)
{
  AVERT(SplayTree, splay);
  return TreeDebugCount(SplayTreeRoot(splay), splay->compare, splay->nodeKey);
}


/* SplayZig -- move to left child, prepending to right tree
 *
 * Link the top node of the middle tree into the left child of the
 * right tree, then step to the left child.  Returns new middle.
 *
 * See <design/splay/#impl.link.right>.
 *
 *    middle    rightNext            middle
 *      B          E                   A              E
 *     / \        / \          =>                    / \
 *    A   C      D   F                    rightNext D   F
 *          rightFirst                             /
 *                                     rightFirst B
 *                                                 \
 *                                                  C
 */

static Tree SplayZig(Tree middle, Tree *rightFirstIO, Tree *rightNextReturn)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  TreeSetLeft(*rightFirstIO, middle);
  *rightNextReturn = *rightFirstIO;
  *rightFirstIO = middle;
  return TreeLeft(middle);
}

/* SplayZigZig -- move to left child, rotating on on to right tree
 *
 * Rotate the top node of the middle tree over the left child of the
 * right tree, then step to the left child, completing a splay "zig zig"
 * after an initial SplayZig.  Returns new middle.
 *
 *    middle     rightNext           middle       rightNext
 *      B          E                   A              E
 *     / \        / \          =>                    / \
 *    A   C      D   F                   rightFirst B   F
 *          rightFirst                               \
 *                                                    D
 *                                                   /
 *                                                  C
 */

static Tree SplayZigZig(Tree middle, Tree *rightFirstIO, Tree rightNext)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  TreeSetLeft(*rightFirstIO, TreeRight(middle));
  TreeSetRight(middle, *rightFirstIO);
  TreeSetLeft(rightNext, middle);
  *rightFirstIO = middle;
  return TreeLeft(middle);
}
  
/* SplayZag -- mirror image of SplayZig */

static Tree SplayZag(Tree middle, Tree *leftLastIO, Tree *leftPrevReturn)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  TreeSetRight(*leftLastIO, middle);
  *leftPrevReturn = *leftLastIO;
  *leftLastIO = middle;
  return TreeRight(middle);
}

/* SplayZagZag -- mirror image of SplayZigZig */

static Tree SplayZagZag(Tree middle, Tree *leftLastIO, Tree leftPrev)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  TreeSetRight(*leftLastIO, TreeLeft(middle));
  TreeSetLeft(middle, *leftLastIO);
  TreeSetRight(leftPrev, middle);
  *leftLastIO = middle;
  return TreeRight(middle);
}


/* SplayState -- the state of splaying between "split" and "assemble"
 *
 * Splaying is divided into two phases: splitting the tree into three,
 * and then assembling a final tree.  This allows for optimisation of
 * certain operations, the key one being SplayTreeNeighbours, which is
 * critical for coalescing memory blocks (see CBSInsert).
 *
 * Note that SplaySplitDown and SplaySplitRev use the trees slightly
 * differently.  SplaySplitRev does not provide "left" and "right", and
 * "leftLast" and "rightFirst" are pointer-reversed spines.
 */

typedef struct SplayStateStruct {
  Tree middle;      /* always non-empty, has the found node at the root */
  Tree left;        /* nodes less than search key during split */
  Tree leftLast;    /* rightmost node on right spine of "left" */
  Tree right;       /* nodes greater than search key during split */
  Tree rightFirst;  /* leftmost node on left spine of "right" */
} SplayStateStruct, *SplayState;


/* SplaySplitDown -- divide the tree around a key
 *
 * Split a tree into three according to a key and a comparison,
 * splaying nested left and right nodes.  Preserves tree ordering.
 * This is a top-down splay procedure, and does not use any recursion
 * or require any parent pointers (see design.mps.impl.top-down).
 *
 * Returns cmp, the relationship of the root of the middle tree to the key,
 * and a SplayState.
 *
 * Does *not* call update to maintain client properties.  See SplaySplitRev.
 */

static Compare SplaySplitDown(SplayStateStruct *stateReturn,
                              SplayTree splay, TreeKey key,
                              TreeCompareFunction compare)
{
  TreeStruct sentinel;
  Tree middle, leftLast, rightFirst, leftPrev, rightNext;
  Compare cmp;

  AVERT(SplayTree, splay);
  AVER(FUNCHECK(compare));
  AVER(!SplayTreeIsEmpty(splay));
  AVER(!SplayHasUpdate(splay));
  
  TreeInit(&sentinel);
  leftLast = &sentinel;
  rightFirst = &sentinel;
  middle = SplayTreeRoot(splay);
  for (;;) {
    cmp = compare(middle, key);
    switch(cmp) {
    default:
      NOTREACHED;
      /* defensive fall-through */
    case CompareEQUAL:
      goto stop;

    case CompareLESS:
      if (!TreeHasLeft(middle))
        goto stop;
      middle = SplayZig(middle, &rightFirst, &rightNext);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZigZig(middle, &rightFirst, rightNext);
        break;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZag(middle, &leftLast, &leftPrev);
        break;
      }
      break;

    case CompareGREATER:
      if (!TreeHasRight(middle))
        goto stop;
      middle = SplayZag(middle, &leftLast, &leftPrev);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZagZag(middle, &leftLast, leftPrev);
        break;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZig(middle, &rightFirst, &rightNext);
        break;
      }
      break;
    }
  }

stop:
  stateReturn->middle = middle;
  stateReturn->left = TreeRight(&sentinel);
  stateReturn->leftLast = leftLast == &sentinel ? TreeEMPTY : leftLast;
  stateReturn->right = TreeLeft(&sentinel);
  stateReturn->rightFirst = rightFirst == &sentinel ? TreeEMPTY : rightFirst;
  return cmp;
}


/* SplayAssembleDown -- assemble left right and middle trees into one
 *
 * Takes the result of a SplaySplit and forms a single tree with the
 * root of the middle tree as the root.
 *
 *   left      middle      right                 middle
 *    B          P          V                      P
 *   / \        / \        / \         =>       /     \
 *  A   C      N   Q      U   X               B         V
 *    leftLast       rightFirst              / \       / \
 *                                          A   C     U   X
 *                                               \   /
 *                                                N Q
 *
 * The children of the middle tree are grafted onto the last and first
 * nodes of the side trees, which become the children of the root.
 *
 * Does *not* maintain client properties.  See SplayAssembleRev.
 *
 * See <design/splay/#impl.assemble>.
 */

static void SplayAssembleDown(SplayTree splay, SplayState state)
{
  AVERT(SplayTree, splay);
  AVER(state->middle != TreeEMPTY);
  AVER(!SplayHasUpdate(splay));

  if (state->left != TreeEMPTY) {
    AVER_CRITICAL(state->leftLast != TreeEMPTY);
    TreeSetRight(state->leftLast, TreeLeft(state->middle));
    TreeSetLeft(state->middle, state->left);
  }

  if (state->right != TreeEMPTY) {
    AVER_CRITICAL(state->rightFirst != TreeEMPTY);
    TreeSetLeft(state->rightFirst, TreeRight(state->middle));
    TreeSetRight(state->middle, state->right);
  }
}


/* SplayZigRev -- move to left child, prepending to reversed right tree
 *
 * Same as SplayZig, except that the left spine of the right tree is
 * pointer-reversed, so that its left children point at their parents
 * instead of their children.  This is fixed up in SplayAssembleRev.
 */

static Tree SplayZigRev(Tree middle, Tree *rightFirstIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  child = TreeLeft(middle);
  TreeSetLeft(middle, *rightFirstIO);
  *rightFirstIO = middle;
  return child;
}

/* SplayZigZigRev -- move to left child, rotating onto reversed right tree
 *
 * Same as SplayZigZig, except that the right tree is pointer reversed
 * (see SplayZigRev)
 */

static Tree SplayZigZigRev(Tree middle, Tree *rightFirstIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  child = TreeLeft(middle);
  TreeSetLeft(middle, TreeLeft(*rightFirstIO));
  TreeSetLeft(*rightFirstIO, TreeRight(middle));
  TreeSetRight(middle, *rightFirstIO);
  *rightFirstIO = middle;
  return child;
}

/* SplayZagRev -- mirror image of SplayZigRev */

static Tree SplayZagRev(Tree middle, Tree *leftLastIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  child = TreeRight(middle);
  TreeSetRight(middle, *leftLastIO);
  *leftLastIO = middle;
  return child;
}

/* SplayZagZagRev -- mirror image of SplayZigZigRev */

static Tree SplayZagZagRev(Tree middle, Tree *leftLastIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  child = TreeRight(middle);
  TreeSetRight(middle, TreeRight(*leftLastIO));
  TreeSetRight(*leftLastIO, TreeLeft(middle));
  TreeSetLeft(middle, *leftLastIO);
  *leftLastIO = middle;
  return child;
}


/* SplaySplitRev -- divide the tree around a key
 *
 * This is the same as SplaySplit, except that:
 *   - the left and right trees are pointer reversed on their spines
 *   - client properties for rotated nodes (not on the spines) are
 *     updated
 */

static Compare SplaySplitRev(SplayStateStruct *stateReturn,
                             SplayTree splay, TreeKey key,
                             TreeCompareFunction compare)
{
  Tree middle, leftLast, rightFirst;
  Compare cmp;

  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(FUNCHECK(compare));
  AVER_CRITICAL(!SplayTreeIsEmpty(splay));
  
  leftLast = TreeEMPTY;
  rightFirst = TreeEMPTY;
  middle = SplayTreeRoot(splay);
  for (;;) {
    cmp = compare(middle, key);
    switch(cmp) {
    default:
      NOTREACHED;
      /* defensive fall-through */
    case CompareEQUAL:
      goto stop;

    case CompareLESS:
      if (!TreeHasLeft(middle))
        goto stop;
      middle = SplayZigRev(middle, &rightFirst);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZigZigRev(middle, &rightFirst);
        splay->updateNode(splay, TreeRight(rightFirst));
        break;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZagRev(middle, &leftLast);
        break;
      }
      break;

    case CompareGREATER:
      if (!TreeHasRight(middle))
        goto stop;
      middle = SplayZagRev(middle, &leftLast);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZagZagRev(middle, &leftLast);
        splay->updateNode(splay, TreeLeft(leftLast));
        break;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZigRev(middle, &rightFirst);
        break;
      }
      break;
    }
  }

stop:
  stateReturn->middle = middle;
  stateReturn->leftLast = leftLast;
  stateReturn->rightFirst = rightFirst;
  return cmp;
}


/* SplayUpdateLeftSpine -- undo pointer reversal, updating client property */

static Tree SplayUpdateLeftSpine(SplayTree splay, Tree node, Tree child)
{
  AVERT_CRITICAL(SplayTree, splay);
  AVERT_CRITICAL(Tree, node);
  AVERT_CRITICAL(Tree, child);
  while(node != TreeEMPTY) {
    Tree parent = TreeLeft(node);
    TreeSetLeft(node, child); /* un-reverse pointer */
    splay->updateNode(splay, node);
    child = node;
    node = parent;
  }
  return child;
}

/* SplayUpdateRightSpine -- mirror of SplayUpdateLeftSpine */

static Tree SplayUpdateRightSpine(SplayTree splay, Tree node, Tree child)
{
  AVERT_CRITICAL(SplayTree, splay);
  AVERT_CRITICAL(Tree, node);
  AVERT_CRITICAL(Tree, child);
  while (node != TreeEMPTY) {
    Tree parent = TreeRight(node);
    TreeSetRight(node, child); /* un-reverse pointer */
    splay->updateNode(splay, node);
    child = node;
    node = parent;
  }
  return child;
}


/* SplayAssembleRev -- pointer reversed SplayAssemble
 *
 * Does the same job as SplayAssemble, but operates on pointer-reversed
 * left and right trees, updating client properties.  When we reach
 * this function, the nodes on the spines of the left and right trees
 * will have out of date client properties because their children have
 * been changed by SplaySplitRev.
 */

static void SplayAssembleRev(SplayTree splay, SplayState state)
{
  Tree left, right;

  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(state->middle != TreeEMPTY);
  
  left = TreeLeft(state->middle);
  left = SplayUpdateRightSpine(splay, state->leftLast, left);
  TreeSetLeft(state->middle, left);

  right = TreeRight(state->middle);
  right = SplayUpdateLeftSpine(splay, state->rightFirst, right);
  TreeSetRight(state->middle, right);

  splay->updateNode(splay, state->middle);
}


/* SplaySplit -- call SplaySplitDown or SplaySplitRev as appropriate */

static Compare SplaySplit(SplayStateStruct *stateReturn,
                          SplayTree splay, TreeKey key,
                          TreeCompareFunction compare)
{
  if (SplayHasUpdate(splay))
    return SplaySplitRev(stateReturn, splay, key, compare);
  else
    return SplaySplitDown(stateReturn, splay, key, compare);
}


/* SplayAssemble -- call SplayAssembleDown or SplayAssembleRev as appropriate */

static void SplayAssemble(SplayTree splay, SplayState state)
{
  if (SplayHasUpdate(splay))
    SplayAssembleRev(splay, state);
  else
    SplayAssembleDown(splay, state);
}


/* SplaySplay -- splay the tree around a given key
 *
 * Uses SplaySplitRev/SplayAssembleRev or SplaySplitDown/SplayAssembleDown
 * as appropriate, but also catches the empty tree case and shortcuts
 * the common case where the wanted node is already at the root (due
 * to a previous splay).  The latter shortcut has a significant effect
 * on run time.
 *
 * If a matching node is found, it is splayed to the root and the function
 * returns CompareEQUAL, or if the tree is empty, will also return
 * CompareEQUAL.  Otherwise, CompareGREATER or CompareLESS is returned
 * meaning either the key is greater or less than the new root.  In this
 * case the new root is the last node visited which is either the closest
 * node left or the closest node right of the key.
 *
 * See <design/splay/#impl.splay>.
 */

static Compare SplaySplay(SplayTree splay, TreeKey key,
                          TreeCompareFunction compare)
{
  Compare cmp;
  SplayStateStruct stateStruct;

#ifdef SPLAY_DEBUG
  Count count = SplayDebugCount(splay);
#endif

  /* Short-circuit common cases.  Splay trees often bring recently
     acccessed nodes to the root. */
  if (SplayTreeIsEmpty(splay) ||
      compare(SplayTreeRoot(splay), key) == CompareEQUAL)
    return CompareEQUAL;

  if (SplayHasUpdate(splay)) {
    cmp = SplaySplitRev(&stateStruct, splay, key, compare);
    SplayAssembleRev(splay, &stateStruct);
  } else {
    cmp = SplaySplitDown(&stateStruct, splay, key, compare);
    SplayAssembleDown(splay, &stateStruct);
  }

  SplayTreeSetRoot(splay, stateStruct.middle);

#ifdef SPLAY_DEBUG
  AVER(count == SplayDebugCount(splay));
#endif

  return cmp;
}


/* SplayTreeInsert -- insert a node into a splay tree
 *
 *
 * This function is used to insert a node into the tree.  Splays the
 * tree at the node's key.  If an attempt is made to insert a node that
 * compares ``CompareEQUAL`` to an existing node in the tree, then
 * ``FALSE`` will be returned and the node will not be inserted.
 *
 * NOTE: It would be possible to use split here, then assemble around
 * the new node, leaving the neighbour where it was, but it's probably
 * a good thing for key neighbours to be tree neighbours.
 */

Bool SplayTreeInsert(SplayTree splay, Tree node) {
  Tree neighbour;

  AVERT(SplayTree, splay);
  AVERT(Tree, node);
  AVER(TreeLeft(node) == TreeEMPTY);
  AVER(TreeRight(node) == TreeEMPTY);

  if (SplayTreeIsEmpty(splay)) {
    SplayTreeSetRoot(splay, node);
    return TRUE;
  }
  
  switch (SplaySplay(splay, splay->nodeKey(node), splay->compare)) {
  default:
    NOTREACHED;
    /* defensive fall-through */
  case CompareEQUAL: /* duplicate node */
    return FALSE;
    
  case CompareGREATER: /* left neighbour is at root */
    neighbour = SplayTreeRoot(splay);
    SplayTreeSetRoot(splay, node);
    TreeSetRight(node, TreeRight(neighbour));
    TreeSetLeft(node, neighbour);
    TreeSetRight(neighbour, TreeEMPTY);
    break;

  case CompareLESS: /* right neighbour is at root */
    neighbour = SplayTreeRoot(splay);
    SplayTreeSetRoot(splay, node);
    TreeSetLeft(node, TreeLeft(neighbour));
    TreeSetRight(node, neighbour);
    TreeSetLeft(neighbour, TreeEMPTY);
    break;
  }

  splay->updateNode(splay, neighbour);
  splay->updateNode(splay, node);
  return TRUE;
}


/* SplayTreeDelete -- delete a node from a splay tree
 *
 * Delete a node from the tree.  If the tree does not contain the given
 * node then ``FALSE`` will be returned.  The client must not pass a
 * node whose key compares equal to a different node in the tree.
 *
 * The function first splays the tree at the given key.
 *
 * TODO: If the node has zero or one children, then the replacement
 * would be the leftLast or rightFirst after a SplaySplit, and would
 * avoid a search for a replacement in more cases.
 */

Bool SplayTreeDelete(SplayTree splay, Tree node) {
  Tree leftLast;
  Compare cmp;

  AVERT(SplayTree, splay);
  AVERT(Tree, node);

  if (SplayTreeIsEmpty(splay))
    return FALSE;

  cmp = SplaySplay(splay, splay->nodeKey(node), splay->compare);
  AVER(cmp != CompareEQUAL || SplayTreeRoot(splay) == node);

  if (cmp != CompareEQUAL) {
    return FALSE;
  } else if (!TreeHasLeft(node)) {
    SplayTreeSetRoot(splay, TreeRight(node));
    TreeClearRight(node);
  } else if (!TreeHasRight(node)) {
    SplayTreeSetRoot(splay, TreeLeft(node));
    TreeClearLeft(node);
  } else {
    Tree rightHalf = TreeRight(node);
    TreeClearRight(node);
    SplayTreeSetRoot(splay, TreeLeft(node));
    TreeClearLeft(node);
    (void)SplaySplay(splay, NULL, compareGreater);
    leftLast = SplayTreeRoot(splay);
    AVER(leftLast != TreeEMPTY);
    AVER(!TreeHasRight(leftLast));
    TreeSetRight(leftLast, rightHalf);
    splay->updateNode(splay, leftLast);
  }

  TreeFinish(node);

  return TRUE;
}


/* SplayTreeFind -- search for a node in a splay tree matching a key
 *
 * Search the tree for a node that compares ``CompareEQUAL`` to a key
 * Splays the tree at the key.  Returns ``FALSE`` if there is no such
 * node in the tree, otherwise ``*nodeReturn`` will be set to the node.
 */

Bool SplayTreeFind(Tree *nodeReturn, SplayTree splay, TreeKey key) {
  AVERT(SplayTree, splay);
  AVER(nodeReturn != NULL);

  if (SplayTreeIsEmpty(splay))
    return FALSE;

  if (SplaySplay(splay, key, splay->compare) != CompareEQUAL)
    return FALSE;

  *nodeReturn = SplayTreeRoot(splay);
  return TRUE;
}


/* SplayTreeSuccessor -- splays a tree at the root's successor
 *
 * Must not be called on en empty tree.  Successor need not exist,
 * in which case TreeEMPTY is returned, and the tree is unchanged.
 */

static Tree SplayTreeSuccessor(SplayTree splay) {
  Tree oldRoot, newRoot;

  AVERT(SplayTree, splay);
  AVER(!SplayTreeIsEmpty(splay));

  oldRoot = SplayTreeRoot(splay);

  if (!TreeHasRight(oldRoot))
    return TreeEMPTY; /* No successor */

  /* temporarily chop off the left half-tree, inclusive of root */
  SplayTreeSetRoot(splay, TreeRight(oldRoot));
  TreeSetRight(oldRoot, TreeEMPTY);
  (void)SplaySplay(splay, NULL, compareLess);
  newRoot = SplayTreeRoot(splay);
  AVER(newRoot != TreeEMPTY);
  AVER(TreeLeft(newRoot) == TreeEMPTY);
  TreeSetLeft(newRoot, oldRoot);
  splay->updateNode(splay, oldRoot);
  splay->updateNode(splay, newRoot);

  return newRoot;
}


/* SplayTreeNeighbours
 *
 * Search for the two nodes in a splay tree neighbouring a key.
 * Splays the tree at the key. ``*leftReturn`` will be the neighbour
 * which compares less than the key if such a neighbour exists; otherwise
 * it will be ``TreeEMPTY``. ``*rightReturn`` will be the neighbour which
 * compares greater than the key if such a neighbour exists; otherwise
 * it will be ``TreeEMPTY``. The function returns ``FALSE`` if any node
 * in the tree compares ``CompareEQUAL`` with the given key.
 *
 * TODO: Change to SplayTreeCoalesce that takes a function that can
 * direct the deletion of one of the neighbours, since this is a
 * good moment to do it, avoiding another search and splay.
 *
 * This implementation uses SplaySplit to find both neighbours in a
 * single splay (see design.mps.splay.impl.neighbours).
 */

Bool SplayTreeNeighbours(Tree *leftReturn, Tree *rightReturn,
                         SplayTree splay, TreeKey key)
{
  SplayStateStruct stateStruct;
  Bool found;
  Compare cmp;
#ifdef SPLAY_DEBUG
  Count count = SplayDebugCount(splay);
#endif


  AVERT(SplayTree, splay);
  AVER(leftReturn != NULL);
  AVER(rightReturn != NULL);

  if (SplayTreeIsEmpty(splay)) {
    *leftReturn = *rightReturn = TreeEMPTY;
    return TRUE;
  }

  cmp = SplaySplit(&stateStruct, splay, key, splay->compare);

  switch (cmp) {
  default:
    NOTREACHED;
    /* defensive fall-through */
  case CompareEQUAL:
    found = FALSE;
    break;

  case CompareLESS:
    AVER(!TreeHasLeft(stateStruct.middle));
    *rightReturn = stateStruct.middle;
    *leftReturn = stateStruct.leftLast;
    found = TRUE;
    break;

  case CompareGREATER:
    AVER(!TreeHasRight(stateStruct.middle));
    *leftReturn = stateStruct.middle;
    *rightReturn = stateStruct.rightFirst;
    found = TRUE;
    break;
  }

  SplayAssemble(splay, &stateStruct);
  SplayTreeSetRoot(splay, stateStruct.middle);

#ifdef SPLAY_DEBUG
  AVER(count == SplayDebugCount(splay));
#endif

  return found;
}


/* SplayTreeFirst, SplayTreeNext -- iterators
 *
 * SplayTreeFirst returns TreeEMPTY if the tree is empty. Otherwise,
 * it splays the tree to the first node, and returns the new root.
 *
 * SplayTreeNext takes a tree and splays it to the successor of a key
 * and returns the new root. Returns TreeEMPTY is there are no
 * successors.
 *
 * SplayTreeFirst and SplayTreeNext do not require the tree to remain
 * unmodified.
 *
 * IMPORTANT: Iterating over the tree using these functions will leave
 * the tree totally unbalanced, throwing away optimisations of the tree
 * shape caused by previous splays. Consider using TreeTraverse instead.
 */

Tree SplayTreeFirst(SplayTree splay) {
  Tree node;

  AVERT(SplayTree, splay);

  if (SplayTreeIsEmpty(splay))
    return TreeEMPTY;

  (void)SplaySplay(splay, NULL, compareLess);
  node = SplayTreeRoot(splay);
  AVER(node != TreeEMPTY);
  AVER(TreeLeft(node) == TreeEMPTY);

  return node;
}

Tree SplayTreeNext(SplayTree splay, TreeKey oldKey) {
  AVERT(SplayTree, splay);

  if (SplayTreeIsEmpty(splay))
    return TreeEMPTY;
  
  /* Make old node the root.  Probably already is.  We don't mind if the
     node has been deleted, or replaced by a node with the same key. */
  switch (SplaySplay(splay, oldKey, splay->compare)) {
  default:
    NOTREACHED;
    /* defensive fall-through */
  case CompareLESS:
    return SplayTreeRoot(splay);

  case CompareGREATER:
  case CompareEQUAL:
    return SplayTreeSuccessor(splay);
  }
}


/* SplayNodeDescribe -- Describe a node in the splay tree
 *
 * Note that this breaks the restriction of .note.stack.
 * This is alright as the function is debug only.
 */

static Res SplayNodeDescribe(Tree node, mps_lib_FILE *stream,
                             TreeDescribeFunction nodeDescribe)
{
  Res res;

  if (!TreeCheck(node))
    return ResFAIL;
  if (stream == NULL)
    return ResFAIL;
  if (nodeDescribe == NULL)
    return ResFAIL;

  res = WriteF(stream, 0, "( ", NULL);
  if (res != ResOK)
    return res;

  if (TreeHasLeft(node)) {
    res = SplayNodeDescribe(TreeLeft(node), stream, nodeDescribe);
    if (res != ResOK)
      return res;

    res = WriteF(stream, 0, " / ", NULL);
    if (res != ResOK)
      return res;
  }

  res = (*nodeDescribe)(node, stream);
  if (res != ResOK)
    return res;

  if (TreeHasRight(node)) {
    res = WriteF(stream, 0, " \\ ", NULL);
    if (res != ResOK)
      return res;

    res = SplayNodeDescribe(TreeRight(node), stream, nodeDescribe);
    if (res != ResOK)
      return res;
  }

  res = WriteF(stream, 0, " )", NULL);
  if (res != ResOK)
    return res;

  return ResOK;
}


/* SplayFindFirstCompare, SplayFindLastCompare -- filtering searches
 *
 * These are used by SplayFindFirst and SplayFindLast as comparison
 * functions to SplaySplit in order to home in on a node using client
 * tests.  The way to understand them is that the comparison values
 * they return have nothing to do with the tree ordering, but are instead
 * like commands that tell SplaySplit whether to "go left", "stop", or
 * "go right" according to the results of testNode and testTree.
 * Since splaying preserves the order of the tree, any tests can be
 * applied to navigate to a destination.
 *
 * In the MPS these are mainly used by the CBS to search for memory
 * blocks above a certain size.  Their performance is quite critical.
 */

typedef struct SplayFindClosureStruct {
  SplayTestNodeFunction testNode;
  SplayTestTreeFunction testTree;
  void *testClosure;
  SplayTree splay;
  Bool found;
} SplayFindClosureStruct, *SplayFindClosure;

static Compare SplayFindFirstCompare(Tree node, TreeKey key)
{
  SplayFindClosure my;
  SplayTestNodeFunction testNode;
  SplayTestTreeFunction testTree;
  void *testClosure;
  SplayTree splay;

  AVERT(Tree, node);
  AVER(key != NULL);

  /* Lift closure values into variables so that they aren't aliased by
     calls to the test functions. */
  my = (SplayFindClosure)key;
  testClosure = my->testClosure;
  testNode = my->testNode;
  testTree = my->testTree;
  splay = my->splay;
  
  if (TreeHasLeft(node) &&
      (*testTree)(splay, TreeLeft(node), testClosure)) {
    return CompareLESS;
  } else if ((*testNode)(splay, node, testClosure)) {
    my->found = TRUE;
    return CompareEQUAL;
  } else {
    /* If there's a right subtree but it doesn't satisfy the tree test
       then we want to terminate the splay right now.  SplaySplay will
       return TRUE, so the caller must check closure->found to find out
       whether the result node actually satisfies testNode. */
    if (TreeHasRight(node) &&
        !(*testTree)(splay, TreeRight(node), testClosure)) {
      my->found = FALSE;
      return CompareEQUAL;
    }
    return CompareGREATER;
  }
}

static Compare SplayFindLastCompare(Tree node, TreeKey key)
{
  SplayFindClosure my;
  SplayTestNodeFunction testNode;
  SplayTestTreeFunction testTree;
  void *testClosure;
  SplayTree splay;

  AVERT(Tree, node);
  AVER(key != NULL);

  /* Lift closure values into variables so that they aren't aliased by
     calls to the test functions. */
  my = (SplayFindClosure)key;
  testClosure = my->testClosure;
  testNode = my->testNode;
  testTree = my->testTree;
  splay = my->splay;

  if (TreeHasRight(node) &&
      (*testTree)(splay, TreeRight(node), testClosure)) {
    return CompareGREATER;
  } else if ((*testNode)(splay, node, testClosure)) {
    my->found = TRUE;
    return CompareEQUAL;
  } else {
    /* See SplayFindFirstCompare. */
    if (TreeHasLeft(node) &&
        !(*testTree)(splay, TreeLeft(node), testClosure)) {
      my->found = FALSE;
      return CompareEQUAL;
    }
    return CompareLESS;
  }
}


/* SplayFindFirst -- Find first node that satisfies client property
 *
 * This function finds the first node (in address order) in the given
 * tree that satisfies some property defined by the client.  The
 * property is such that the client can detect, given a sub-tree,
 * whether that sub-tree contains any nodes satisfying the property.
 * If there is no satisfactory node, ``FALSE`` is returned, otherwise
 * ``*nodeReturn`` is set to the node.
 *
 * The given callbacks testNode and testTree detect this property in
 * a single node or a sub-tree rooted at a node, and both receive an 
 * arbitrary closure.
 *
 * TODO: This repeatedly splays failed matches to the root and rotates
 * them, so it could have quite an unbalancing effect if size is small.
 * Think about a better search, perhaps using TreeTraverse?
 */

Bool SplayFindFirst(Tree *nodeReturn, SplayTree splay,
                    SplayTestNodeFunction testNode,
                    SplayTestTreeFunction testTree,
                    void *testClosure)
{
  SplayFindClosureStruct closureStruct;
  Bool found;

  AVER(nodeReturn != NULL);
  AVERT(SplayTree, splay);
  AVER(FUNCHECK(testNode));
  AVER(FUNCHECK(testTree));

  if (SplayTreeIsEmpty(splay) ||
      !testTree(splay, SplayTreeRoot(splay), testClosure))
    return FALSE; /* no suitable nodes in tree */

  closureStruct.testClosure = testClosure;
  closureStruct.testNode = testNode;
  closureStruct.testTree = testTree;
  closureStruct.splay = splay;
  closureStruct.found = FALSE;

  found = SplaySplay(splay, &closureStruct,
                     SplayFindFirstCompare) == CompareEQUAL &&
          closureStruct.found;

  while (!found) {
    Tree oldRoot, newRoot;
    
    /* FIXME: Rename to "seen" and "not yet seen" or something. */
    oldRoot = SplayTreeRoot(splay);
    newRoot = TreeRight(oldRoot);

    if (newRoot == TreeEMPTY || !(*testTree)(splay, newRoot, testClosure))
      return FALSE; /* no suitable nodes in the rest of the tree */
  
    /* Temporarily chop off the left half-tree, inclusive of root,
       so that the search excludes any nodes we've seen already. */
    SplayTreeSetRoot(splay, newRoot);
    TreeSetRight(oldRoot, TreeEMPTY);

    found = SplaySplay(splay, &closureStruct,
                       SplayFindFirstCompare) == CompareEQUAL &&
            closureStruct.found;

    /* Restore the left tree, then rotate left so that the node we
       just splayed is at the root.  Update both. */
    newRoot = SplayTreeRoot(splay);
    TreeSetRight(oldRoot, newRoot);
    SplayTreeSetRoot(splay, oldRoot);
    TreeRotateLeft(&splay->root);
    splay->updateNode(splay, oldRoot);
    splay->updateNode(splay, newRoot);
  }

  *nodeReturn = SplayTreeRoot(splay);
  return TRUE;
}


/* SplayFindLast -- As SplayFindFirst but in reverse address order */

Bool SplayFindLast(Tree *nodeReturn, SplayTree splay,
                   SplayTestNodeFunction testNode,
                   SplayTestTreeFunction testTree,
                   void *testClosure)
{
  SplayFindClosureStruct closureStruct;
  Bool found;

  AVER(nodeReturn != NULL);
  AVERT(SplayTree, splay);
  AVER(FUNCHECK(testNode));
  AVER(FUNCHECK(testTree));

  if (SplayTreeIsEmpty(splay) ||
      !testTree(splay, SplayTreeRoot(splay), testClosure))
    return FALSE; /* no suitable nodes in tree */

  closureStruct.testClosure = testClosure;
  closureStruct.testNode = testNode;
  closureStruct.testTree = testTree;
  closureStruct.splay = splay;

  found = SplaySplay(splay, &closureStruct,
                     SplayFindLastCompare) == CompareEQUAL &&
          closureStruct.found;

  while (!found) {
    Tree oldRoot, newRoot;
    
    oldRoot = SplayTreeRoot(splay);
    newRoot = TreeLeft(oldRoot);

    if (newRoot == TreeEMPTY || !(*testTree)(splay, newRoot, testClosure))
      return FALSE; /* no suitable nodes in the rest of the tree */
  
    /* Temporarily chop off the right half-tree, inclusive of root,
       so that the search excludes any nodes we've seen already. */
    SplayTreeSetRoot(splay, newRoot);
    TreeSetLeft(oldRoot, TreeEMPTY);

    found = SplaySplay(splay, &closureStruct,
                       SplayFindLastCompare) == CompareEQUAL &&
            closureStruct.found;

    /* Restore the right tree, then rotate right so that the node we
       just splayed is at the root.  Update both. */
    newRoot = SplayTreeRoot(splay);
    TreeSetLeft(oldRoot, newRoot);
    SplayTreeSetRoot(splay, oldRoot);
    TreeRotateRight(&splay->root);
    splay->updateNode(splay, oldRoot);
    splay->updateNode(splay, newRoot);
  }

  *nodeReturn = SplayTreeRoot(splay);
  return TRUE;
}


/* SplayNodeRefresh -- updates the client property that has changed at a node
 *
 * This function undertakes to call the client updateNode callback for each
 * node affected by the change in properties at the given node (which has
 * the given key) in an appropriate order.
 *
 * The function fullfils its job by first splaying at the given node, and
 * updating the single node.  In the MPS it is used by the CBS during
 * coalescing, when the node is likely to be at (or adjacent to) the top
 * of the tree anyway.
 */

void SplayNodeRefresh(SplayTree splay, Tree node)
{
  Compare cmp;

  AVERT(SplayTree, splay);
  AVERT(Tree, node);
  AVER(!SplayTreeIsEmpty(splay)); /* must contain node, at least */
  AVER(SplayHasUpdate(splay)); /* otherwise, why call? */

  cmp = SplaySplay(splay, splay->nodeKey(node), splay->compare);
  AVER(cmp == CompareEQUAL);
  AVER(SplayTreeRoot(splay) == node);

  splay->updateNode(splay, node);
}


/* SplayNodeInit -- initialize client property without splaying */

void SplayNodeInit(SplayTree splay, Tree node)
{
  AVERT(SplayTree, splay);
  AVERT(Tree, node);
  AVER(!TreeHasLeft(node)); /* otherwise, call SplayNodeRefresh */
  AVER(!TreeHasRight(node)); /* otherwise, call SplayNodeRefresh */
  AVER(SplayHasUpdate(splay)); /* otherwise, why call? */

  splay->updateNode(splay, node);
}


/* SplayTreeDescribe -- Describe a splay tree
 *
 * See <design/splay/#function.splay.tree.describe>.
 */

Res SplayTreeDescribe(SplayTree splay, mps_lib_FILE *stream, Count depth,
                      TreeDescribeFunction nodeDescribe)
{
  Res res;

  if (!TESTT(SplayTree, splay))
    return ResFAIL;
  if (stream == NULL)
    return ResFAIL;
  if (nodeDescribe == NULL)
    return ResFAIL;

  res = WriteF(stream, depth,
               "Splay $P {\n", (WriteFP)splay,
               "  compare $F\n", (WriteFF)splay->compare,
               "  nodeKey $F\n", (WriteFF)splay->nodeKey,
               "  updateNode $F\n", (WriteFF)splay->updateNode,
               NULL);
  if (res != ResOK)
    return res;

  if (SplayTreeRoot(splay) != TreeEMPTY) {
    res = WriteF(stream, depth, "  tree ", NULL);
    if (res != ResOK)
      return res;
    res = SplayNodeDescribe(SplayTreeRoot(splay), stream, nodeDescribe);
    if (res != ResOK)
      return res;
  }

  res = WriteF(stream, depth, "\n} Splay $P\n", (WriteFP)splay, NULL);
  return res;
}


/* C. COPYRIGHT AND LICENSE
 *
 * Copyright (C) 2001-2016 Ravenbrook Limited <http://www.ravenbrook.com/>.
 * All rights reserved.  This is an open source license.  Contact
 * Ravenbrook for commercial licensing options.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 * 
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 
 * 3. Redistributions in any form must be accompanied by information on how
 * to obtain complete source code for this software and any accompanying
 * software that uses this software.  The source code must either be
 * included in the distribution or be available for no more than the cost
 * of distribution plus a nominal fee, and must be freely redistributable
 * under reasonable conditions.  For an executable file, complete source
 * code means the source code for all modules it contains. It does not
 * include source code for modules or files that typically accompany the
 * major components of the operating system on which the executable file
 * runs.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */